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Abstract

This paper describes a new algorithm that improves the perfomlance of

application controlled demand paging for the out of core visualization of data sets

that are on either local disks or disks on remote servers. The performance im

provements come from better overlapping the computation with the page reading

process, and by performing multiple page reads in parallel. The new algorithm can

be applied to many different visualization algorithms since application controlled

demand paging is not specific to any visualization algorithm. The paper includes

measurements that show that the new multittu'eaded paging algorithm decreases

the time needed to compute visualizations by one third when using one processor

and reading data from local disk. The time needed when using one processor and

reading data from remote disk decreased by up to 60%. Visualization lares using

data from remote disk ran about as fast as ones using data from local disk because

the remote runs were able to make use of the remote se_er's high perfommnce

disk array.
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1 Introduction

Simulations 1_1 on large parallel systems produce large data sets

having hmlch'eds of megabytes to terabytes of data. The researchers

producing these data sets prefer to visualize them using their per

sonal workstations. High end PC workstations cun'ently have the

compute and graphics power to perform these visualizations. How

eve1, these workstations do not have sufficient memoD_ to com

pletely load large data sets, which means that out of core visual

ization techniques must be used. These techniques calculate the

visualization with only a fraction of the data set resident in mem

oD_. In addition, many data sets are so large that they can only fit on

central file servers. Since most file servers do not have significant

extra CPU and memoD_ capacity, remote out of core visualization

is required. The availability of reasonably priced Gigabit Ethernet

equipment means that network bandwidth is not an issue for remote
out of core visualization over local area networks.

One method for performing out of core visualization is

application controlled demand paging [1]. Tiffs is similar to the

demand paging used in vil_ual memoD_ systems, but it is built into

the application instead of the operating system. Demand paging

takes advantage of the fact that many visualization calculations only

touch a small fraction of the data set. For example, streanfline cal

culations only use the data sm'romlding the streanflines.

The demand paging algorithm divides the data set into fixed

size blocks, or pages. When a data value is requested, the paging

system loads the page if it is not resident, and the page is cached in

a memoD_ pool. This means that, if the portion of the data set that is
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cm'rently needed (the working set) is smaller than the memoD_ pool

and also has been loaded into memoD_, the perfommnce is nearly

the same as if the entire data set has been loaded into memoD_. A

user examining one region of a data set will often be able to load

the working set into memou¢ and take advantage of tiffs improved

perfommnce.

A locally written interactive visualization tool has successfully

used demand paging to allow interactive visualization of 5 to 10 GB

data sets on systems with 500 MB to 1 GB of memou¢. Data sets on

remote systems can be visualized interactively using the Network

File System (NFS) to retrieve data pages.

Howevel, the original implementation of out of core visualiza

tion using demand paging did not try to perform computation and

disk access at the same time. While the operating system's disk

caching and read ahead did overlap disk access and computation,

the amount of overlap was small. In addition, the original imple

mentation only had one disk request outstanding at a time. This

meant that the operating system could not optimize use of the disk

by reordering the requests to reduce seek time, or by issuing concm"

rent requests to different drives in RAID disk subsystems. Finally,
overlapping computation and disk access is even more impol_ant
when the disk is accessed across the network since the network adds

latency.

Tiffs paper increases the amount of overlap of computation and

disk accesses by dividing the visualization into a ntmlber of tasks,

and then latmfing the tasks using a pool of worker ttn'eads. A sched

uler initially rmls one ttn'ead per processor. When a ttn'ead needs to

read data from disk, it is blocked, and the scheduler allows another
ttn'ead to run. The blocked ttn'ead is restm_ed after the data has been

read and a processor becomes available. A separate pool of reader

ttn'eads request data pages from the operating system and wait for

the requests to complete, ff the data set is on local disk, the reader

ttn'eads run as part of the application; if the data set is on a remote

serve_, the ttu'eads run on that server.

Tiffs new mtdtittn'eaded demand paging algorittml has several

advantages other than its increased performance. First, a visual

ization algorithm must only be parallelized for it to take advantage

of the overlapped disk access and computation. This modification

is useful in itself, and may have already been performed. Tiffs is

an advantage over out of core techniques that require the visualiza

tion algorithm to be modified for that specific technique [2, 3, 4].

A second advantage is that demand paging techniques are not tied

to a pmlicular visualization algorittml; instead, they can be used

to accelerate a number of visualization algorithms. Data structm'es

proposed to enable out of core visualization of specific visualiza

tion techniques [2, 3, 4]. could be adapted to use demand paging

and also be accelerated using the techniques described in this paper.

The new algorittml was designed so that it is compatible with

time critical visualization [5], which is where the time to compute

a visualization is limited to guarantee a specified frame rate. With
time critical visualization, each visualization object stops its com

pntation after its time budget has been exceeded. To do tiffs, each
object must have a fairly accurate estimate of the CPU time used.

Some operating systems, such as Unix, record the amount of CPU



timethatattn'eaduses,butthegranularityoftheCPUtimeistoo
coarseforinteractivevisualizationapplications.Instead,because
thealgorithmonlyschedulesonettn'eadperprocessol,andbecause
mostsystemshaveahighresolutionrealtimeclock,theamount
ofelapsedwallclocktimeshouldbeanacceptableestimateofthe
elapsedCPUtime.Wehopetoextendouroutofcorevisualization
implementationtosuppol_timecriticalvisualizationinthefntm'e.

2 Related Work

In addition to demand paging algorittmls, out of core visualization

algorittmls include streaming algorittmls and indexing algorittmls.

Streaming algorithms read the entire data set by reading it in pieces

that are small enough to fit into memoD_. Once one piece has been

brought into memoly, the computation is nm over that portion of

the data. Fm'ther pieces are read and processed until the visual

ization has been computed for the entire data set. Law et al. [6]

describes a general architecture that streams data ttn'ough arbitrmy

visualization pipelines. The UFAT batch visualization program [7]

also performs streaming on time vaDdng data sets. When the visu

alization only accesses a small fraction of the data set, streaming
algorittmls that do not avoid reading all of the data can be slower

than a demand paging algorithm.

The second type of out of core visualization algorithms is index
ing algorithms. Many indexing algorithms have been described for

isosm'face computation [3, 4, 8, 9, 10]. These algorithms precom

pnte an index that identifies the po_lion of the data that is necessaD_
to compute the requested visualization. For isosurface computation,

the index identifies which cells contain portions of the isosm'face.
One disadvantage of many index algorittmls is that their index is

specific to the visualization algorittml.

Some non visualization out of core algorithms have similari
ties to this work. Flight simulation [11] and walk ttn'ough algo

rittmls [12] store their geometD_ on disk, and only keep the geome

tD_ which is inside the viewing frustum resident in memoD_. These

algorittmls can hide the disk latency by prefetching the geometD_

that will soon move inside the viewing frustum. The prefetctfing is

possible because the viewer's expected position can be computed

by extrapolating the user's position from the last few viewing po

sitions. These algorittmls cammt be used for computing visualiza

tions because there is no concept of a viewing frustum during the

visualization computation [ 13].

3 Application-Controlled Demand Paging

The basic idea of demand paging for visualization stmls with log

ically breaking the data set into fixed size pages. When a file is

opened, only enough header itffommtion is read to set up the data

structm'es which track the pages that have been loaded into mem

oD_. When a data value is needed dm'ing a visualization compnta

tion, the associated page number is first computed. If the page is

in memoly, the requested value is retm'ned. Othelvdse, memoly is

allocated for the page, the page is read, and the requested value re

tinned. Because the implementation uses a fixed size memoD_ pool

for page storage, allocating a page when the pool is full involves
reallocating, or stealing, the memoly used by another page.

The technique used for dividing the data set into pages impacts

the performance. This paper's implementation uses a cubed page

fommt for paging structured grid files (unstructured grids are not

cun'ently supported). The original 3D an'ays of data are broken into

a series of pages, each page containing an 8x8x8 cube, or 2 KB, of
the original data. Using a cube of data instead of the original array

order reduces the number of pages that must be read because, if
the original data was simply broken into pages without changing

the layout, each page would contain a plane or slab of data. For

most dfl'ections of traversal, a larger fraction of the data in a page

is used when traversing a cube of data instead of a plane of data.

Experiments show that using cubes instead of planes of data reduces

the amount of data that must be read by about half. The page size

should be the best compromise between having large pages, which

decreases the cost of reading each byte, and smaller pages, which

retrieve a smaller amount of mmecessaD_ data. The 8x8x8 page size

had the best performance in experiments described in the earlier

demand paging paper [1].

The cubed page format requires that files be convelled to a new

file fommt before the visualization process. For the ttn'ee data sets

described in Section 6, their converted files would require an addi

tional 19 to 30% of storage if partially filled pages were padded to

the full page size when written to disk. Because 19% of a large file

is still large, pmlially filled pages are not padded on disk. These

pages are expanded to full size when they are loaded into memoD_

to allow the nm time data access code to be simpler and faster.

When a new page must be read when the memoly pool is full,

an existing memoD_ block must be stolen. The paging module al

locates a block that has not been used recently by associating a

referenced bit with eveD_ page in memoD_. The referenced bit is set

when a page is referenced. When a page must be stolen, the in

memoD_ pages are scanned to locate one with a cleared referenced

bit. The referenced bit of a page is cleared as it is examined dur

ing the scamfing, which means that a page is reallocated if it has
not been accessed after two scmming passes have completed. Tiffs

algorithm was adapted from similar ones used for virtual memoD_
page replacement in operating systems [14].

3.1 Field Encapsulation Library

The paging system is pro1 of the Field Encapsulation LibraD_ [15].

This librm T encapsulates the management of field data for different

grids, such as regulm, structm'ed curvilinem, multiblock, and un

struclm'ed grids. It provides a grid independent interface by plac

ing all the grids types in a C++ class hierarchy and using poly

mollotffsm to direct requests to the con'ect functions at run time.

Because paged grids and fields are also defined in this class tfferar

chy, visualization algorittmls do not need to be modified to perfoml

out of core visualization. Instead, they simply access data as if the

entire data set was loaded into memo1 T, and the demand paging

system loads data as required.

FEL retrieves data from the paging system either ve_lex at a time

or a 2x2x2 group of vellices at a time. Each request can be for all or

part of the data (coordinates, solution data) stored at the vertex or

cell vertices. Being able to retrieve multiple values with one ftmc

tion call reduces the cost of translating the i, j, k lattice coordinates

to page ntmlber and offset. One consequence of this interface is

that a si@e retrieval request can cause a ntmlber of pages to be

read if multiple values are requested or a 2x2x2 request falls on a

page bomldm T.

4 Multi-Threaded Demand Paging

The multi ttu'eaded demand paging algorittml halts a computation

when it requires a page that is not resident and attempts to run an

other computation while the page is being read. Tiffs is done by

using a simple, high level multitasking libraD_ called the Abstract

Multitasking LibraD_ (AML).

An application uses AML to compute a visualization by creating

a number of tasks. Typically, each task represents a complete or

partial visualization object, such as a single streanfline or a single
grid sm'face. Each task is a C++ object that holds enough itfforma

tion to identify the work to be done, and has a method that is called
to do the computation. For example, the task object might hold

pointers to a streanfline's seed point and the velocity field within



whichthepointwillbeintegrated,anddefineafunctionthatcalls
anexistingstreamlineintegrationfunction.

Oncetheapplicationcreatesthetasks,itplacestheminanAML
taskgroup,whichisasimplelistoftasks.Then,theapplication
usesAMLtoinitializeapoolofworkerttu'eads,andtellsAMLto
usethepooltocomputethevisualizationsinthetaskgroup.At
thestartofthecomputation,AMLfirstassignsataskfromthetask
groupstoeachttu'ead,andstartsthettu'eadsrunning.Onettu'eadis
startedforeachprocessorthatwillbeused.Eachttu'eadthenworks
independentlyonitsassignedtaskuntilit finishesthetaskorfinds
thattheit needsa page of data that is not memo_3_ resident, ff a
ttu'ead finishes the task, it uses AML to find another task in the task

group to compute, ff a ttn'ead needs a page of data, it requests that
the page be read by a reader ttu'ead; this process is described below.

After placing the read request in the queue, the ttn'ead sees ff

another ttn'ead is waiting to get use of a processor. If so, the first

ttu'ead wakes up the other ttu'ead before going to sleep. Otherwise,

if there is no waiting ttu'ead, the first ttu'ead will check to see if there

are remaining tasks in the task group as well as an idle ttn'ead in the

ttu'ead pool. If the checks succeed, the first ttn'ead wakes up the idle

ttu'ead before going to sleep. The previously idle ttu'ead then starts

work on the next task in the task group.

The algorithm just described is a ttn'ead scheduler; it is similar

to the ones built into operating systems. The scheduler attempts

to keep one ttu'ead running on each processor by only having one

ttu'ead per processor in a turntable state; that is, one ttn'ead that

is not blocked. Tiffs means that a ttn'ead is not always inmledi

ately restarted after a page is read for it. The ttu'ead is immediately

restarted ff the scheduler sees that there are fewer running ttn'eads

than processors. Howevel, ff eveD_ processor has a ttu'ead to 1am,

the now ready to run ttn'ead is placed in a queue to wait until a pro
cessor becomes available.

The scheduler does not use any special operating system func

tions to manage its pool of worker ttu'eads. Instead, it uses standard

intellorocess communication mechanisms such as condition vari
ables, ff a ttn'ead is to be blocked, it waits on a condition variable,

which causes it to stop execution. The scheduling mechanism does
assume that, if only one ttu'ead per processor is not blocked, the

operating system is smart enough to 1am each of the ttn'eads on a

separate processor. Ore" experience is that this works reasonably

well on Irix systems if the sproc ttn'eading libraD_ is used. The

pttu'eads multitasking libraD_ gives lower performance. A possible

explanation for the low perfomunlce is that, ff the pttn'eads package

does its own ttn'ead scheduling outside the kernel (as is typical),

the pttn'eads scheduler interacts mffavorably with the AML sched

uler. Howevel, we have not yet fully explored all of the pttu'eads

scheduling options.

4.1 Parallelizing Demand Paging

The parallel paging algorithm has a few differences from the se

rial paging algorithm described above. The changes fall in ttn'ee

categories:

Page access. Each access to a page to retrieve data must be

done atomically. Othelwise, one ttu'ead could verify that a page

was present, a second ttn'ead could steal that page's storage and

read a new page into it, and then the first ttn'ead could retrieve the

new page's data by mistake. The problem is eliminated by serial

izing access to the page with a mutual exclusion lock. Howevel,

allocating one lock per page in the file is impractical since there

may be tens or hundreds of millions of pages mapped at once, and

sproc locks use about 150 bytes each. Instead, the implementa
tion uses one lock for a group of 48 to 80 pages, depending on the

type of file. Limited experiments indicate that the number of pages
per lock is not a critical parameter: doubling the ntmlber of pages

per lock lowers the perfomunlce by about 3%.

Reading a page. When a ttu'ead finds that a page is not present,

it finds memoD_ for the page, and then, instead of reading the page

from disk, it puts a request for the page to be read into a queue, ff

the ttn'ead needs more than one page, it allocates memoly and puts

a request into the read queue for each page. Then, the ttu'ead waits

for the reads to be completed.

A separate pool of reader ttn'eads takes requests from the read

queue, reads the page, and unpacks the page ff necessaD_. When a
reader ttn'ead finishes a read, it checks whether all of the worker's

requests have been completed. If so, the worker ttn'ead is restmled if

the scheduler indicates that a processor is available, and the ttn'ead
is marked as "ready to run" otherwise.

Corner cases. The page allocation code needs to be modified

to insure that only one ttu'ead allocates a page at a time using both

a lock for scamfing the page table and the per page group locks.

Also, the page reading code must handle having more than one

worker request the page at the same time. This is handled by keep

ing a list of pages that are being read, and checking the list before

adding a request to the read queue.

4.2 Remote Demand Paging

Remote demand paging could be performed using a distributed file

system, such as the Network File System (NFS). Howevel, NFS

provides lower performance than a specialized paging serve1, as

shown below. One reason for the lower perfomunlce of NFS is that

it only sends blocks that are aligned on regular block boundaries.

Because paged files have arbitrarily sized pages, the protocol will

retmi1 more data than is necessmy. In addition, some NFS imple

mentations may requfi'e more context switches and copying of data

compared to what can be achieved with a specialized client and
server.

The remote paging server is a simple application that commuul

cares with the local paging libraD_ using a TCP socket. The server
suppolls ttu'ee primaD_ operations: Open, which opens a file and

retmils a file handle; Read, which reads and returns data given a file
handle, an offset, and size; and Close, which closes the file specified

by a file handle. The server does not suppoll writing.

When a worker ttu'ead discovers that a page from a remote paged

file is not memoD_ resident, it puts the request in the read queue, and

also sends a read request to the remote server. The remote server

application has a pool of reader ttn'eads that constantly take incom

ing read requests from the socket, perfoml the reads, and retm'n the

requested data via the socket. The reader ttu'eads serialize read

ing and writing to and from the socket using a pail" of semaphores.

A single local reader ttu'ead waits for results coming from the re
mote serve_, and matches the retm'ned data to a request in the read

queue. Then, the ttu'ead reads the data from the socket and unpacks
the page if necessaD_. The final step is to wake up the requesting

worker ttn'ead if a processor is available. Because the responses can

come back in any ordel, each request and response has a sequence

nunlber identifying it.

To allow reasonable perfomunlce, the TCP socket must have the

TCP_NODELAY option enabled. If the option is not enabled, the

perfommnce on Irix systems is much lower. This happens because

the TCP protocol code will hold on to a read request message for

a while due to a desfi'e to combine multiple small messages into a

single lmge one.

5 Implementation

The local and remote demand paging algorittmls just described have

been implemented in both interactive and batch visualization appli
cations. WINe most users will use the interactive application, the

timing runs described below used a batch visualization application
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called batchvks. We used tile batch application because it al

lowed performance data to be recorded for tile same visualization
under a ntmlber of different conditions. Howevel, because tile data

set is traversed only once, tiffs is a worst case scenario for out of

core visualization using demand paging: there is no chance for tile

data set's working set to be entirely loaded into tile cache of data

pages.

Tile b at c hv 2 s application uses FEL and tile VisTech [16] visu

alization librm3,. This application allows tile user to compute a set

of visualizations for each time step in tile visualization. The pro

gram cun'ently suppol_s pm_icle tracing (streanflines, streaklines,

and patlilines) as well as tile extraction of sm'faces of tile grid. Ad

ditional visualization methods will be suppolled in tile future. Tile
visualizations can be optionally colored by using one of several
standard functions of tile field.

A non tlu'eaded version of FEL and batchvks can be created

using compile time flags that replace tile ttn'eaded po_lions of tile
code with tile older non tlu'eaded versions. Tile serial version of tile

remote paging code is similar to tile parallel version, but only allows

synctu'onous requests to tile server. The experiments described be
low give timings with this version to show tile improvements due to

tile new algorithms. The tlu'eaded version of b at chv2 s uses SGI
sproc style ttn'eads instead of tile ptlu'eads package because tile

fo_xner gives better performance.

Because tile cm'rent remote paging server is a prototype, it does

not implement secm'ity. We expect that adding security would not
be difficult since tile server only uses a single TCP/IP socket for
commmlication.
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6 Experimental Methodology

We evaluated tile multi ttn'eaded demand paging algoritlm_'s perfor

mance by measm'ing tile time required to compute a visualization

for several different co_tfigm'ations. Tile performance was measm'ed
for different data sets, different locations of tile data (local or re

mote), and for different algorithm parameters.

Tile experiments were _am on older systems that have approxi

mately tile same perfomunlce that can be achieved with a modem

fully configm'ed high end PC system. Tile visualizations were com

puted on an SGI Onyx with 4 196 Mhz RI0000 processors and 1

GB of memo_3,. Local data resided on a 4 disk striped disk an'ay.
These disks are fairly old, which means that their performance is

low: 12.5 MB/sec for large, sequential reads using direct I/O. Re
mote data was served by an SGI Onyx with 8 196 Mhz RI0000

processors and 5 GB of memo_3,. Tile remote data was stored on a

older RAID disk array that has a peak sequential perfo_xnance of 25
MB/sec. This large system was used as a file server because it was

tile only system with sufficient disk space that could be dedicated

to _amning performance experiments.

Tile remote server's large memo_3, and processor comqgurations
were largely unused during tile runs since ve_3, little processing was

necessac¢, and because all of tile machines had their operating sys



NtmlberGrid SolutionTotal Amount
Data ofTime Size Size Size Read
Set Steps (MB) (MB) (GB) (MB)
SSLV 1 254.6 318.3 0.56 45.8
FI8 150 27.0 33.7 4.97 99.6
Harrier 1600 55.1 68.9 107.7 8745

Table1:Datasetstatistics.Thesizesincludeboththedataandfile
headers.

tem'sfilecacheflushedbeforeeachrun.Thecachewasflushed
by1atoningaprogramthatallocatedasmuchmemowaspossible,
whichtakesmemo13_awayfromthefilecache,andthenreadinga
different,largefileinrandomorder.Illaddition,multiplecopiesof
theSSLVandFI8datasetswereplacedontheremoteserver.Con
secutiverunsrotatedttu'oughthedatasetcopies.All oftheiams
useda200MBmemowpooltoholddatapages.

Thetwosystemswereconnectedbyan800Mbit/secHIPPITCP
network.WhileHIPPInetworksarefairlyexotic,theperformance
shouldbesimilaronthemoreconmlonGigabitEthernetsincethe
remoteprotocoldoesnotuseHIPPI'slargepacketcapability.The
priceofGigabitEthemethasdecreasedtothepointwhereitcanbe
deployedtoindividualresearcher'sworkstations.

Weusedthettu'eedatasetsshowninFigures8to10forthe
perforlnancetinlings.Table1containsstatisticsaboutthedatasets.
Thedatasetsare:

SSLV.ThisdatasetistheSpaceShuttleLamlchVehicleflyingat
Mach1.25.Thissteadysimulationwascomputedinordertohave
amoreaccuratesimulationoftheshuttleaerodynamicscompared
toearliersimulations,andenabledmoreaccurateengineeringanal
yses.Thevisualizationcontainsseveralstreanllinesshowingthe
ail_owbetweentheexternaltank,thesolidrocketboostel,andthe
orbiter.Thestreanllinesarecoloredbythelocaldensityvalue.

F18.TheFI8datasetshowstheFI8flyingata30degreeangle
ofattack.Thesimulationwasperfomledtoanalyzetheinteraction
ofthevol_exfomledovertheleadingedgeextensionwiththever
ticalstabilizer.Thevisualizationinjectspm_iclesintothecenterof
thevortex,andcolorsthemaccordingtothelocaldensityvalue.

Harrier.TheHarrierdatasetshowstheHanierflyingslowly30
feetabovetheground.Thesimulationispartofresearchintothe
causeofoscillationsseenwhenthejetisflyingattiffslevel.The
visualizationshowsparticlesinjectedintothejetexhausts,which
showsthestructureofthegromldvorticescreatedbytheexhaust.
Theparticleswereinjectedeve13_thirdtimesteptoreducethecom
pntationrequirements,andarecoloredaccordingtothelocalpres
sure.Becausetheworkstationusedforthelocalrunsdidnothave
sufficientdiskspacetoholdtheHarrim,onlylalnsusingremotedata
accessareshownbelow.Also,becausethevisualizationtakesover
anhourtocompute,fewerperfomlancerunsweremeasuredwith
theHarrier.

Differentsetsoflaresexploredthefollowingvariables:
Datasetaccess.Runsaccessingalocalcopyofthedatashow

theperformanceofthelocaldemandpagingalgorithm.Different
larescomparedtheperfomlanceofaccessingremotedatausingthe
custompagingprotocolandthestandardNFSprotocol.

Numberofprocessors.Some_lSshowthebasicperformance
ofthealgorithms,whentheyare1amonasingleprocessor.Other
laresusedallfourof thesystem'sprocessors,whichshowsthe
amomltofspeeduppossible.It wouldbeum'easonabletoexpect
linearspeedupsbecausethediskandnetworkperfomlancedidnot
change.Thesingleprocessorrunsusedtheh'ixruaoacomnland
torestrictallttu'eadstoasingleprocessor.

Numberofreaderandworkerthreads.Differentrunsshow
howtheamomltofcomputationanddiskaccessconcm'rencyaffects
performance.
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Figure 5: SSLV timings sunmlary. The 1 and 4 CPU values are for

16 reader ttn'eads and 8 worker ttn'eads per processor.
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Figure 6:FI8 timings summary. The 1 and 4 CPU values are for
16 reader ttn'eads and 8 worker ttn'eads per processor.
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Figm'e 7: Hanier timings surrmlm2¢. The 1 and 4 CPU values are

for 16 reader ttn'eads and 8 worker ttn'eads per processor.

7 Results

The detailed results are shown in Tables 2 to 4. All of the tim

ings are from single 1_1, which means 1_1 to run variations are ex

pected.

Figures 1 to 4 show the general perfomlance trends with the FI8
when the number of reader and worker ttu'eads are varied.

The general trends for the other two data sets are similar. These



1Processor 4Processors
Data Serial Num. NumberofReaderThreads Num. NumberofReaderThreads
Access WT 1 I 4 I 8 116124 WZ 1 I 4 I 8 116124

1 33.8 34.2 34.4 34.2 34.6 4 33.3 25.5 21.8 21.1 20.9

Local 30.1 4 34.5 26.6 22.7 21.5 21.6 16 35.0 25.8 21.9 19.5 18.7

8 34.9 26.3 22.5 20.1 19.7 32 35.2 25.6 21.6 19.8 18.8

Remote 1 68.7 72.3 68.6 60.3 73.1 4 63.8 63.3 58.3 66.1 64.9

via 55.0 4 59.5 69.3 66.4 64.8 67.8 16 69.7 58.5 71.5 63.2 61.6

NFS 8 72.9 65.0 61.5 56.8 67.4 32 71.4 68.8 71.5 66.6 55.2

Remote 1 41.6 43.2 43.4 43.6 45.9 4 44.5 35.3 30.7 29.2 29.6

via 56.7 4 41.1 32.3 27.1 25.2 25.4 16 42.8 33.7 29.0 26.5 25.1

Server 8 35.4 27.4 23.3 21.2 20.9 32 42.8 34.1 29.2 26.8 26.3

Data

Access

Local

Remote

via

NFS

Remote

via

Selwer

Serial

146

217

187

Data

Access

Remote

via

NFS

Remote

via

Selwer

Table 2: SSLV timings, in seconds. Key:

1 Processor

Num. Number ofReaderTtu'eads

wr 1 I 4 I 8 116124
1 165 163 159 161 161

4 138 131 107 99.6 100

8 133 123 101 94.4 95.0

1 240 223 224 225 226

4 201 200 195 193 192

8 197 195 188 209 184

1 172 175 171 168 171

4 128 119 102 97.2 96.9

8 120 114 96.8 91.8 91.4

WT worker ttu'eads.

4 Processors

Num. Number of Reader Ttn'eads

wr 11418116
4 127 119 93.2 87.8

16 125 113 86.8 75.4

32 125 113 86.4 76.0

4 168 168 168 165

16 177 177 173 169
32 178 178 175 171

4 114 106 86.6 83.7

16 104 95.7 76.5 77.1

32 109 99.3 78.8 71.8

Table 3:FI8 timings, in seconds. Key: WT worker ttn'eads.

1 Processor 4 Processors

Serial Num. Num. ReaderTtn'eads Num.

wr 1 I 8 [ 16 wr
1 264 267 275 4

225 4 231 234 226 16

8 219 223 207 32

1 225 233 229 4

227 4 187 181 150 16

8 173 167 146 32

Table 4: Harrier timings, in minutes. Key:

[ 24

87.2

74.8

75.2

164

169
170

85.2

68.7

69.8

Num. Reader Ttn'eads

118116
174 181 170

165 171 159

166 173 159

123 116 90.7

108 103 78.5

109 105 77.4

WT workerttn'eads.

charts have curves for constant numbers of worker ttn'eads per pro

cessor. Tiffs means that the curves in the 1 processor chmls are for

1, 4, or 8 worker ttn'eads, and the curves in the 4 processor chmls
are for 4, 16, or 32 worker ttn'eads.

Increasing the number of worker or reader ttn'eads generally in

creases the performance when the data set is on local disk or ac

cessed via the custom server. Tiffs result shows that increasing the

amount of concurrency that is available to the new multittn'eaded

paging librm3_ increases the performance up to a point. Howevel,

when remote data are accessed using NFS, increasing the number

of reader ttn'eads does not increase perfommnce. Increasing the

number of worker ttn'eads appears to slightly increase perfommnce.

The charts show that 8 worker ttn'eads per processor is only

slightly faster than using 4 worker ttn'eads. Increasing the num

ber of worker ttn'eads further is mtlikely to increase perfommnce.

Using 24 reader ttn'eads instead of 16 reader ttn'eads does not al

ways increase the performance (see Tables 2 to 4). Overall, the

best algorithm parameters are 8 worker ttn'eads per processor and
16 reader ttn'eads. These parameters give good perfommnce and

minimize the total number of ttn'eads. Since a real implementation
would have to use fixed parameters, the following discussions will

only consider timings with these parameters.

Figures 5 to 7 have timings with these parameters that allow the

different algorithms to be compared. The comparison results fall

into ttn'ee categories:

Local data performance. The new ttn'eading libraly substan

tially decreased the execution time when the data set resides on lo

cal disk. If only one processor is used, the time taken is a thfl'd less

than the time needed by the serial implementation. The run time

decreases when four processors are used with the FI8 to nearly half

the serial time. Tiffs shows that these multittn'eading techniques

will make good use of multiprocessor systems if there is sufficient
disk bandwidth. The time does not decrease with the SSLV because

that visualization only requires 3 CPU seconds of computation

the bulk of the time is spent waiting for data.

Remote data performance. The lares that accessed remote data

using the demand paging server were substantially faster than any

of the serial lares with the demand paging server or any of the lares

that retrieved data using NFS. When one CPU was used, the paging
server runs took between 35% (for the Harrier) and 60% (for the

SSLV) less time than the fastest 1 CPU NFS or serial lares. Runs

using the demand paging server and 4 CPUs were even faster with
the Hanier and FI8. The 4 CPU SSLV run was slightly slower

since there was no need for the additional processors, and using



additional processors has increased overhead.

Remote data versus local data. One smprising resuh with the

remote timings is that the remote rims using the demand paging
server were about as fast as the corresponding local data runs. This

can be explained by the tffgher performance disk subsystem on the
remote server: it has a RAID an'ay with muhiple disk drives, while

the local disk subsystem has only foul" striped disks. Tiffs speedup
will likely be seen in production usage of ttu'eaded demand paging

because central file servers usually have a better storage system than

a personal workstation.

8 Summary and Future Work

Tiffs paper has described an approach that improves the perfor

mance of application controlled demand paging for out of core vi

sualization by better overlapping the computation with the page

reading process. It does this by using a pool of worker ttu'eads

that perform the visualization computation, and a separate pool of

reader ttn'eads to perform the page reads. A scheduling module

manages the worker ttu'eads so that only one worker runs per pro

cessor. Measm'ements show that the multittu'eaded paging algo

rittml decreases the time needed to compute visualizations by one

third when using one processor and reading data from local disk.

The time needed when using one processor and reading data from

remote disk decreased by between 35% and 60%, in part due to the

high performance of the remote server's disks. Finally, the new re

mote paging algorittml was substantially faster than using NFS for

remote paging.

The performance increases described in tiffs paper make out of

core visualization using local and remote demand paging more at

tractive. The increased speed will allow researchers to visualize

even larger data sets using the workstations on theft" desk instead of

having to go down the hall to a large shared visualization system.

Furthermore, the increased perfomlance of remote demand paging

will allow researchers to more quickly visualize data sets on their

personal workstations that are too large to be stored on theft" work
station's disk.

One direction of futm'e work would be mn experinlents using
100 Mbit/sec Fast Ethernet instead of HIPPI. The runs shown here

read data at an average rate that could be handled with Fast Eth

ernet, at most 2.2 MB/sec. Howevel, the peak rate is undoubtedly

higher. A second direction would be to implement an interactive

time critical visualization system in order to gauge the effective

ness of the time critical support built into the new multittu'eaded

paging algorittml. A thfi'd direction would be to evaluate the perfor

mance of remote demand paging over a wide area network instead

of over a local area network. Finally, over the next few weeks re
searchers in ore" division will be exploring the limits of out of core

remote visualization by using these new techniques to visualize a
one terabyte data set on personal workstations.
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